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Abstract 

Calculations are presented for electric quadrupole excitations in relativistic nucleus- 

nucleus collisions. The theoretical results are compared to an extensive data set and it is 

found that electric quadrupole effects provide substantial corrections to cross sections, 

especially for heavier nuclei. 



- 
The search for a fundamentally new state of matter in the form of a Quark-Gluon a 

Plasma 1) has stimulated the production of very high energy nuclear beams. The hope is to 

observe the Quark-Gluon Plasma in a relativistic nucleus-nucleus collision. At the 

Berkeley Bevalac a variety of light nuclei such as 12C, 160 and %le can be accelerated up 

to energies of 2.1 GeV/N and heavier nuclei such as 13%a and 238 U can be accelerated to 

1.26 and 0.96 GeV/N respectively. At Brookhaven, New York, 160 beams are available at 

14.6 GeV/N and at the CERN SPS, in Geneva, beams of 160 and 32s are both produced at 

60 and 200 GeV/N. The Relativistic Heavy Ion Collider (RHIC) is expected to produce 

two colliding beams at 100 GeV/N to give a total center-of-mass energy of 200 GeV/N, 

which corresponds to a single beam energy of 21 TeV/N. Grabiak 2) has pointed out that 

nuclear beams of 3.5 TeV/N and 8 TeV/N may be possible at the CERN Large Hadron 

Collider (LHC) or the Superconducting Super Collider (SSC). By way of comparison, the 

majority of Galactic Cosmic Rays have energies 3) of about 1 GeV/N, with a range 3, 

typically from 10 MeV/N to 1 TeV/N. However, the JACEE collaboration 4, has made 

observations as high as loo0 TeV/N. 

a 
Nucleus-nucleus reactions proceed mainly through either the Strong or Electromagnetic 

(EM) interactions. Historically, Strong interaction processes have been the main object of 

study 5), however with the availability of the above high energy nuclear beams there has 

been a resurgence of interest in EM interactions in relativistic nucleus-nucleus collisions. 6) 

The primary theoretical tool for studying these relativistic EM processes has been via 

the Weizsacker-Williams (WW) method 6-71 of virtual quanta. The nucleus-nucleus total 

EM reaction cross section is 

CJ = Nww (Eu> CJ(Ey) q (1) 

where E+ is the virtual photon energy, N,, (E$ is the WW virtual photon spectrum and 

06) is the photonuclear reaction cross section. For high accuracy it is important to use 

experimental photonuclear data for 0%). (For an excellent compilation of photoneutron e 



data see reference 8.) However, a more exact formulation of G involves a breakdown into 

the various EM multipolarities such as electric dipole (El), electric quadrupole @2), 

magnetic dipole (Ml) etc. The most important contributions to G are from El and E2 so 

that 

G = G E 1 + G F 2  

[NEl(%)GEl(q) + NE2(Ey)oE2(Ey)l (2) =I 
where NEi (Eu> is the virtual photon spectrum of a particular multipolarity due to the 

projectile nucleus and %i (Eu) is the photoriuclearreaction cross section of the target 

nucleus. Bertulani and Baur 6) have derived expressions for NEi (Er) and found that the 

electric dipole spectrum is the same as the WW spectrum, i.e.  NE^ (Ey) = N, (Ey). 

Furthermore at very high projectile energies 

equation (1) is seen to be a very high energy approximation to all multipolarities included in 

equation (2). Bertulani and Baur 6) have made a crude estimate of the EM cross section 

using equation (2) but they pulled  NE^ (Ev> and  NE^ (Eu) outside the integral and evaluated 

them at a single energy and used sum rules to evaluate OEi (&) %. However, this 

procedure did not yield very accurate results. Thus I undertook a more exact study 9, 

leaving equation (2) as it stands, and using experimental data for the photonuclear cross 

NEi (Eu) and NMi (Er) are equal so that 

I 
sections by defining 

(3) 
oE1 (Eu> E oexpt. (Eu) -0E2@y) 

where OexpL 

a aeoreticJ calculation based on a Lorentian shape for the Electric Giant Quadrupole 

Resonance (GQR). Details for this procedure can be found in reference 9. As was noted 

in that reference, the above procedure yields very accurate values for the sum o~1 + 0 ~ 2  

is the experimentally measured photonuclear cross section and 0 ~ 2  (Eu> is 

(which is to be compared to nucleus-nucleus reaction experiments) even though the GQR 

parameters are uncertain. The basic reasori for this, as can be seen from equation (3), is 



that an under (over) estimate in 0 ~ 2  6) will give an over (under) estimate in O E ~  (Ey), so 

that the combined O E ~  + O E ~  in equation (;!) will not change very much. 

In reference 9 a detailed study of El arid E2 was undertaken for the reaction 89Y (RHI, 

X) 88Y where RHI refers to various Relativistic Heavy Ions and X is anything. It was 

found that E2 effects account for a considerable fraction of the cross section, and that 

inclusion of E2 (via equation 2) provides improved agreement with experiment over the 

WW method. Given this situation, it was decided to compare this theoretical approach to 

as much experimental data as possible. Thus the present work involves a comparison to 

neutron emission from 89Y, l97Au7 59Co imd neutron and proton emission from 12C, 160 

and 180 which includes both electric dipole and quadrupole effects. This complements 

earlier work 7) which involved an extensive comparison of WW theory to experiment. 

v 
The basic calculational method is outlined in reference 9 and the discussion will not be 

repeated here. Also reference 7 includes a. very detailed summary of which photonuclear 

data were used for o,,,~ (E$ in equation (3). The same data is used in the present work. 

All isoscalar GQR parameters were taken from the compilation of Bertrand lo) and are 

listed in Table 1. As mentioned in the Introduction, even though these parameters are 

somewhat uncertain the total EM cross section 

due to the subtraction procedure of equation (3). The most inaccurate results would be 

expected for the 12C, ' 6 0 , 1 8 0  GQR parameters where the isoscalar CQR is fragmented 

into several components 10). Only a single Lorentzian 9) was 

+ 0 ~ 2  is expected to be very accurate 9, 



Table 1: Isoscalar Giant Quadrupole Resonance (GQR) Parameters taken from the 

compilation of Bertrand 10). E is the GQR resonance excitation energy, r is the full-width 
e 

at half maximum and f is the fractional depletion of the Energy Weighted Sum Rule. (The 

GQR of light nuclei are fragmented into several peaks, so that the parameters below 

represent an estimated average value.) 

160 22.0b 3.0C 0.4d 

180 24.W 3 .OC 0 . 4 C  

59Co 16.3b .5.6b 0.61b 

89Y 13.8b '3.2b 0.55d 

197Au 10.8a :2.9b 0.95d 

a E is calculated from 63 A-lD 

b best value taken from Table 4 of ref. 10 

C estimate 

d from Fig 23 of ref. 10 

used in the present work. However 0 ~ 2  is found to be quite small for these nuclei (see 

below) so that my conclusion that the calculated CYE~ + 0 ~ 2  is accurate remains valid. 

For the nuclei 12C, 160 and 180, protori (p) emission occurs as well as neutron (n) 

emission. Thus equation (3) needs to be modified to incorporate the branching ratio. I 

assume that the excited nucleus decays o& by proton or neutron emission and that the 

(photon) energy dependent neutron branching ratio is defined as 

so that 



oE2 (Ey, n) = fn (Ey) oE2 (Ey) ( 5 )  

where oE2 (Ey) is the photonuclear GQR cross section. Thus for proton and neutron 

emission equation (3) becomes 

CJEI (Ey, n> = oexpt. (EY, n> - fn (Ey) 012 (Ey) 

oE1 (%, P> = oexpt. (EY, P> - [1 - fn (Ey)] oE2 

(64 

and 

(6b) 

Equations (4) - (6) were used for nucleon emission from 12C, 1 6 0  and 180. For 59C0, the 

(y, p) cross section is not available and so a constant value of fn = 0.7 (suggested from 

reference 11) was used. For 89Y and 197Au I used fn = 1.0. 

1 
The calculated results are listed in Table 2, along with the experimental results of 

various groups. 12-16) 0 ~ 1  + 0 ~ 2  is the calculated result to be compared with the data 

Oexpt. Also listed are the results of WW calculations.7) In all cases two theoretical cross 

sections are listed. The first is calculated using an expression for the minimum impact 

parameter as 
a 

bmin = Ro-1 (T) + Ro.1 (PI (7) 

where € 4 ~ . 1  represents the 10-percent charge density radius 7) of the target or projectile. 

The second theoretical cross section listed in parentheses in Table 2 uses bmin given by Hill 

et al. 14-16) as 

bmin = ro [Ap'/3 + A ~ l f i  - X(Ap-'fi +  AT-^/^] (8) 

where ro = 1.34 fm and X = 0.75. (Note that my WW calculations disagree with earlier 

results of Hill et al. 14-16) due to an error in their calculations. 19-20]) 

There are several features readily apparent from Table 2; 

0) + 0 ~ 2  is always larger than w. However, for nucleon emission from 12C, 

l 6 0  and l 8 0  this difference is never larger than about 4%, but for neutron emission from 

59C0, 89Y and 197Au the difference is much larger varying between about 7% - 15%. 



b) For nucleon emission from 12C and 160 both mi + 0 ~ 2  and ow agree with 

experiment for both choices of bin. 

iii) For nucleon emission from 180 both < T E ~  + 6 ~ 2  and ow disagree with experiment 

for both choices of bmin. ow actually gives slightly better agreement but not by a 

significant amount. 

iv) For neutron emission from 197Au, + a2 is significantly closer to experimental 

values than is w, although for most cases it still lies outside the error bars. An 

exception however is a much poorer agreement for 139La (see also references 19 and 20). 

Significant discrepancies with 197Au data have been noted previously for WW theory.7) 

V) For neutron emission from 89Y, + a 2  is in much better agreement with 

experiment than is w. This is especially true for the NAr and 56Fe projectiles. 

vi) For 59C0, ~1 + q3 is again better for 2oNe, although slightly worse for 56Fe. AS 

above the agreement for the 13%a projectile is significantly poorer. 

AND CONCLUSIOlys 

Calculations have been made for nucleon emission via EM dissociation in relativistic 

nucleus-nucleus collisions. Results are presented for Weizsacker-Williams theory and also 

for separate electric dipole and quadrupole components. The theories have been compared 

to an extensive data set. It is found that electric quadrupole (E2) effects are not significant 

for proton and neutron emission from 12C, 160 or 180. However, E2 contributions are 

substantial for neutron emission from 59Co,89Y and 197Au, generally leading to improved 

agreement between theory and experiment. Notable disagreements occur for l3% 

projectiles (1.26 G e V N  where the theoretical 

improve the theoretical results for 160 projectiles at 60 and 200 GeV/N, although the 

theoretical cross sections are still too small. 

+ < T E ~  are too big. Quadrupole effects 

In general it has been found that electric quadrupole effects are an important component 

in nucleus-nucleus collisions and that these effects can be calculated accurately. 
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